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ABSTRACT
ICP-OES and LA-ICP-MS instruments routinely used to assess the geochemical properties of the 
various natural and synthetic materials. In this contribution, the analytical routines and method 
development procedures of the ICP-OES and LA-ICP-MS facilities installed at the İstanbul 
University-Cerrahpaşa Geological Engineering Department, Geochronology and Geochemistry 
Laboratory have been evaluated using well-known international rock standards. Sample preparation 
techniques, method development, experimental setup and measurement conditions for the both 
ICP-OES and LA-ICP-MS instruments were discussed and specific analyze results of NIST SRM 
614, BCR-2, AGV-2, BCR-2G and AGV-2G were evaluated. Flux-free USGS glass standards were 
produced by in-house techniques and flux-bearing glasses were produced by fusion of sample with 
the mixture of ultra-pure lithium-tetraborate, lithium metaborate and lithiumbromide were evaluated 
and compared with the well-known reference values in the literature. Relative standard deviation 
(RSD) values for the major oxide measurements for standards given range of 0.0 wt. % to 1.5 wt. 
%. RSD values for the trace and rare-earth-elements values were mainly lower than 10 wt. %. The 
results confirm that the both flux-bearing and flux-free glasses reasonably match with the world-
wide inter-laboratory values for international standards samples. The combination of these two 
instruments can be used to conduct geochemistry of various solid earth materials.
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1. Introduction

Whole-rock geochemical data is the benchmark 
of the petrological studies and different aspects of 
the geological research. From the beginning of the 
1970s large compilation and datasets from the various 
parts of the world have been created for igneous, 
metamorphic and sedimentary petrology studies 
by using whole-rock geochemistry (Pearce et al., 

1984). Majority of these data have been determined 
successively by instruments of X-ray Fluorescence 
(XRF, Potts and Webb, 1992), Inductively Coupled 
Plasma-Mass Spectrometry (ICP-MS; Jenner et al., 
1990), Inductively Coupled Plasma Atomic Emission 
Spectroscopy (ICP-AES) or Inductively Coupled 
Plasma - Optical Emission Spectrometry (ICP-OES; 
Dahlquist and Knoll, 1978) and many different 
techniques outlined in Jochum et al., (2011). 
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Together with the XRF techniques, ICP-OES also 
frequently used to assess the whole-rock geochemical 
or specific element contents of the desired samples 
(Jarvis and Jarvis, 1992; Navarro et al., 2002; Alomary 
and Belhadj, 2007). ICP-OES is a spectrometric 
technique to assess the elemental content of the 
aqueous solutions. Sample preparation techniques, 
dilution factors, element infiltration and interpretation 
of the output data significantly affect the results of 
the ICP-OES instrumentation. However, ICP-OES 
routinely used to analyze for the major oxide elements 
and high concentration (>100 ppm) element ratios 
(Elburg et al., 2012; Shao et al., 2017). 

By the development of the combined analysis of 
Laser Ablation (LA) and ICP-MS, these combined 
instruments became also a powerful and routine 
tool to detect the whole rock geochemistry of the 
geological samples (Longerich et al., 1996; Norman 
et al., 1996; Günther et al., 2001; Petrelli et al., 2008; 
Tamura et al., 2015). Apart from the spot analysis of 
the actual samples such as minerals, glass or rock 
powder pellets; sample preparation techniques such as 
powdering (Imai, 1990), flux-free fusion (Fedorowich 
et al., 1993; Norman et al., 1996), Pt-crucible flux-
free fusion (Chen et al., 2000), Pt-capsule flux-free 
fusion (Kurosawa et al., 2006) and lithium borate 
(Li2B4O7) fusion (Günther et al., 2001; Eggins, 2003) 
are frequently used to create samples that are suitable 
for LA-ICP-MS measurements.

In this contribution, we will explore the analytical 
capabilities of the ICP-OES and LA-ICP-MS 
instruments installed at the Geochronology and 
Geochemistry Laboratory of İstanbul University-
Cerrahpaşa, Faculty of Engineering, Department 
of Geological Engineering. Developed methods to 
measure the whole rock geochemistry of the natural 
rock associations for combined ICP-OES and LA-
ICP-MS and evaluated experimental scheme of the 
analysis will be checked by measuring the international 
reference samples of BCR-2 (and BCR-2G- flux free), 
AGV-2 (and AGV-2G flux free) by USGS (United 
States Geological Survey) and SRM NIST 614. In the 
following chapter, we first give the general outlines of 
the experimental setup of the ICP-OES and LA-ICP-
MS for the whole rock geochemistry analysis; we will 
explain the samples preparation techniques, then we 

further discuss the data acquisition, data interpretation 
and subsequent results. 

2. Instrumentation

We use Perkin Elmer AVIO 200 ICP-OES together 
with Perkin Elmer NexION 2000 ICP-MS combined 
with ESI NWR213 solid state laser for the whole rock 
analytical measurements. First we present the general 
configuration, sample preparation and experimental 
conditions of the ICP-OES instrument, and then we 
will evaluate the general characteristics of the LA-
ICP-MS configuration.

2.1. Sample Dissolution Procedures and Experimental 
Conditions for ICP-OES

Rock powders of the BCR-2 and AGV-2 used for 
the whole rock measurements. We mainly measure the 
major oxide elements (analytes) to deduce the desired 
content of the studied samples with ICP-OES. 0.2 
gram of rock powder was fused with 1 gram of ultra-
pure lithium-tetraborate (Li2B4O7), lithium metaborate 
(LiBO2) and lithiumbromide (LiBr) (We mention this 
technique as lithium tetraborate fusion or fusion for the 
remainder of the text). Mixed powders were poured 
in the platinum-gold (95 wt. %) Pt + 5 wt. % Au) 
crucibles and heated at 1050 °C for 20 minutes. Fused 
rock powders dissolved in 5 wt. % trace metal grade 
(63.012 %) HNO3 solution on hot plates with magnetic 
mixer. The solutions were transferred to falcon tubes of 
known weight and additional 5 wt. % HNO3 added up 
to 50 g total mass of the final solution. Depending on 
the type of the sample, they were diluted by 1/1000 or 
1/2000 dilution factors. Apart from the three different 
USGS standards, Geological Survey of Japan (GSJ; 
JR-1, JG1-A), additional USGS standards (BHVO-1; 
GSP-2; and reagent blanks) were also prepared for 
calibration and internal standardization. 

Perkin Elmer AVIO 200 ICP-OES has very low 
argon consumption rate (8 L/min) and generates 
matrix-tolerant plasma during the measurement stage. 
Attenuated radial, attenuated axial, radial and axial 
modes of plasma views using for the specific elements. 
All the tables for the manuscript stored in Mendeley 
Database. Plasma operating conditions for ICP-OES 
given in Mendeley Database, 2021. More common 
major oxides were mainly measured with radial 
modes while the scarcer elements have been measured 
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by axial modes. Sample measurement takes place 
100 seconds and sample washout cleaning sessions 
between samples also taken as 60 seconds. Limit of 
detection with spectral wavelengths for the major 
oxide analytes are given in Mendeley Database, 2021. 
Coefficient of correlation for the ICP-OES analysis 
always calibrated for greater values than 0.9995 (>r).

2.2. Sample Dissolution Procedures and Experimental 
Conditions for ICP-OES

Perkin Elmer NexION 2000 ICP-MS combined 
with ESI NWR213 laser system have been used to 
measure the specific analyte content of the desired 
samples. We use BCR-2, AGV-2, BCR-2G and AGV-
2G USGS glass standards and NIST 614 standard 
to show to how accurate the geochemistry analysis 
done by LA-ICP-MS measurements. Besides, during 
analysis, a reagent blank glass that only contain 1 
gram of ultra-pure Li2B4O7, LiBO2 and LiBr added 
to the analyze section to allow correction during data 
interpretation.

BCR-2 and AGV-2 glass discs were created by 
using lithium tetraborate fusion procedure that were 
explained in the section above. Contrary to dissolving 
processes that we have conducted before the ICP-
OES analysis, the fused glass discs were left in the 
crucibles and cooled. The cooled discs were ripped-
off from the crucibles. These fused glass discs were 
embedded in the epoxy then polished it acquire a flat 
surface for analysis. We also produced flux-free BCR-
2 and AVG-2 glass discs (without adding a lithium-

tetraborate) by the scheme given in Wilson (2017). We 
also embedded these flux-free glasses of BCR-2G and 
AGV-2G in epoxy and polished the embedded surface 
(Figure 1). 

The surface of the different samples were cleaned 
with methanol, 2 wt. % HNO3 trace metal grade nitric 
acid and 18 MΩ ultrapure water before the analysis. 
We use NIST glasses 610 and 612 for initial instrument 
calibration and within session measurements. Helium 
was used as a carrier gas for ablated aerosol. LA-
ICP-MS operating conditions were outlined in the 
Mendeley Database, 2021.

LA-ICP-MS measurements were carried out using 
time resolved analysis operating in a peak jumping 
mode. The laser repetition rate and the laser energy 
density are fixed to 10 Hz and ~7 J/cm2, respectively 
(Mendeley Database, 2021). Data were collected 
by runs that consists three standard measurements 
at the beginning (each on 610 and 612), nine spot 
measurement three standard measuring on the closing 
of the measurements with session. The selected 
measuring scheme were implemented from Petrelli et 
al., (2008). Internal standards were selected as 29Si or 
42Ca which were given by the measurements in ICP-
OES for BCR-2 and AGV-2. The internal standard 
values for NIST 614 were from the GEOREM 
database. All samples (standards, samples and blanks) 
were in the same sample holder. 

Limits of detections (LODs) values have been 
evaluated according to outline given in Longerich et 
al., (1996). In the Figure 2, we plotted the general 

Figure 1- Embedded glass discs prepared for LA-ICP-MS measurements.
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reduction was done by the SILLS (Guillong et al., 
2008); ICPMSDatCAL (Liu et al, 2010) softwares. 
SILLS (Guillong et al., 2008); ICPMSDatCAL (Liu et 
al, 2010) softwares (Figure 3 and 3b).

4. Discussion

In this section, first we will present and discuss 
the results of ICP-OES measurements on the two 
USGS standards that were dissolved by nitric acid 
techniques. Afterwards, we presented the results of 
the measurements conducted by LA-ICP-MS system 
and discussed the accuracy and homogeneity of the 
produced flux-bearing and flux-free glasses of the 
standard materials.

4.1. Discussion of the ICP-OES Measurements

The results of the major oxide compositions of the 
BCR-2 and AGV-2 were situated in the reasonable 
range with the standards values given in the literature 
for these two well-known samples (Govindaraju, 
1994; Jochum et al., 2016). The measured values were 
compared with the large-scale data set of the Jochum 
et al., (2016) that contain measurement for BCR-
2 and measurement for AGV-2 that were compiled 
from various techniques. The measured values from 
our results were compared to the compilation values 
fits well (Mendeley Database, 2021). The biggest 
RSD values belong to P2O5 and MnO measurements 
but they remain below 1.5. Accuracy (here expressed 

LODs values for standard reference material 610. 
LODs values were dispersed along 4.7 to 0.01 ug/g 
for 40 μm spot size. Differences in the LODs values  
were extremely sensitive to spot size, instrument 
counting power, accuracy, behaviour of the elements 
and background gas values in the measurement 
system (Günther et al., 2001). If all other parameters 
except spot size were fixed, range of the LODs mainly 
were controlled by increase or decrease of the spot 
size. If we pick a lower value of spot size such as 20 
um, range of LODs reduced but the sampling area by 
laser might represent a lower fraction of the glass disc 
and therefore poor representation of the measured 
samples. Thus, in our attempts, we experienced the 
most reliable results achieved by using 40 μm even 
the LODs slightly large range comparing the other 
spot values. 

3. Data Reduction for ICP-OES and LA-ICP-MS 

The data reduction of ICP-OES analysis were done 
by Perkin Elmer SYNGISTIX data reduction software. 
The measured intensities were directly calculated 
as weight percent by the algorithms written in the 
software. For the natural samples, pre-calculated loss 
of ignition values were added during the calculation. 
The iron content of the samples were given as total 
FeO in the results. 

Trace element analysis of the selected samples 
have been conducted by LA-ICP-MS and data 

Figure 2- Limits of detection for 40 μm laser spot size on SRM 610.
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as relative deviation from the standard reference 
material) is 2.5 % better than all the measurements. 
Thus the measured USGS glasses give accurate results 
and they can be used to constrain the internal standards 
for the various natural and synthetic rock and mineral 
samples that evaluated at the LA-ICP-MS system. 

4.2. Discussion of the LA-ICP-MS Measurements

Even though  there are many different problems 
can effect and alter the measurement on LA-ICP-
MS systems as outlined in the previous sections, the 
glass producing techniques and glass homogeneity 
also significantly affect the measurements (Liu et al., 
2013). The contribution of the Jochum et al. (2011) 

Figure 3- a) Signal selection window of the SILLS software,  b) data reduction and signal selection 
window of the ICPMSDataCal.
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clearly was indicated core and rim variations of the 
different elements along the whole scale measurements 
on NIST SRM 610 to 617. To tackle this problem, we 
also mainly measure the core regions of the both our 
in-house produced glass discs with or without-fusion 
processes.

Results of the measured standards have been 
given in Mendeley Database. In all measurements, 
the standards were reasonably matched well with the 
measurements that have been conducted in different 
laboratories. Error values were displayed as two sigma 
(σ) and reasonably low for the majority of the trace 
element values. 

The lithium tetraborate fusion mainly sustains robust 
sample digestion and creates nearly homogeneous 
and intact samples that can be easily stored and re-
measured after long periods of time (Eggins, 2003). 
However, in house generation of the flux-free glasses 
can posses problems since the absence of the fluxing 
agent and possible case of incomplete homogenization 
throughout the sample (Petrelli et al., 2008, Jochum 
et al., 2016). We plot the results of our samples and 
compare their relative deviation from a standard value 
(Figure 4). Majority of the plotted samples created 
by the lithiumtetraborate fusion (BCR-2 and AGV-2) 
display more minor relative deviation than flux-free 

glasses (BCR-2g and AGV-2g). The most prominent 
spikes come from Tb and Lu measurements on flux-
free glass samples. Thus it can be postulated that the 
flux-bearing glasses are more reasonable agents to 
understand the general trace element chemistry of the 
desired samples.

Since the rare earth elements are one of the 
most common geochemical discriminator in the 
geochemical studies (e.g. Pearce et al., 1984) we 
specifically show their RSD values in weight percent 
to show the reliability of our measurement in Figure 5. 
In these RSD values are mainly calculated lower than 
the 10 % percent relative to standard reference values 
for the fused discs, while the flux-free glasses display 
much higher relative standard distributions as outlined 
above. Besides, SRM 614 values also display values 
always lower better than 10 % relative distribution 
values. Surprisingly, in both AGV-2g and BCR-2g 
samples, Tb values display high relative deviations. 
The reason of this defect related with the possible 
incomplete homogenization during fusion processes. 
But even so, the case majority of the sample was 
situated within the reasonable range. 

Thus, the results show the good precision levels of 
both in-house produced flux-free glass standards and 
flux-bearing fused glass discs during the ICP-OES and 
LA-ICP-MS measurements. 

Figure 4- Relative standard deviation from a reference value of the measurements conducted in 
this study. The reference values taken from Jochum et al. (2016) (BCR-2F and AGV2-F 
represent samples generated by lithium tetraborate fusion).
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5. Results

ICP-OES and LA-ICP-MS measurements, which 
are installed at İstanbul University-Cerrahpaşa 
Geological Engineering Department Geochronology 
and Geochemistry Laboratory display accurate 
analysis capabilities have been conducted in 
international known standard reference materials. 
ICP-OES analysis of major oxide elements reasonably 
match with the international standards. Mainly, 
majority of the samples display better relative 
deviation values than 10%. The flux-free glasses 
of BCR-2g and AGV-2g often display much higher 
relative deviation comparing to standard values as 
high as 25%. Thus, the lithium tetraborate fusion 
displays more homogeneous glasses for the LA-ICP-
MS measurements. The reason of this situation can 
be related with the incomplete homogenization of the 
desired sample. Anyhow, samples reasonably display 
close values with the international standard values.

Therefore, the combined measurement systems 
confirm the well resolved capabilities and application 
potential of this laboratory on various areas of 
petrology, geochemistry, analysis of natural and 
synthetic minerals, metals, environmental samples 
and archaeological - archaeometry samples. 
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